24小时故障咨询电话 点击右边热线,在线解答故障拨打:400-189-9291
民旺保险柜售后服务维修24小时电话/总部400号码统一客服热线_光合生物如何适应进化?中国团队破解高效捕获利用光能分子机制

民旺保险柜售后服务维修24小时电话/总部400号码统一客服热线

全国报修热线:400-189-9291

更新时间:



民旺保险柜总部统一400电话

















民旺保险柜售后服务维修24小时电话/总部400号码统一客服热线:(1)400-189-9291
















民旺保险柜维修售后中心热线:(2)400-189-9291
















民旺保险柜(全国统一400预约热线)24小时维修服务电话
















民旺保险柜原厂配件保障:使用原厂直供的配件,品质有保障。所有更换的配件均享有原厂保修服务,保修期限与您设备的原保修期限相同或按原厂规定执行。




























维修案例分享会:组织维修案例分享会,分享成功案例,促进团队学习。
















民旺保险柜售后维修电话(全国400)服务受理中心
















民旺保险柜24小时服务电话|全国统一400售后热线:
















成都市双流区、内蒙古赤峰市敖汉旗、淄博市高青县、潮州市饶平县、肇庆市怀集县、永州市江华瑶族自治县、晋中市平遥县、海东市化隆回族自治县、肇庆市封开县
















成都市简阳市、怀化市麻阳苗族自治县、江门市蓬江区、阿坝藏族羌族自治州阿坝县、大庆市肇州县、黔西南普安县、韶关市始兴县、广安市武胜县
















广西桂林市秀峰区、天津市东丽区、长治市上党区、武汉市硚口区、宿迁市泗洪县、邵阳市武冈市、驻马店市驿城区、延边敦化市
















忻州市宁武县、中山市沙溪镇、岳阳市临湘市、日照市莒县、内蒙古呼和浩特市回民区、南京市江宁区  定安县龙河镇、内蒙古呼和浩特市托克托县、中山市东凤镇、辽阳市太子河区、常德市津市市、聊城市东昌府区、天水市麦积区
















七台河市桃山区、保山市施甸县、孝感市应城市、南阳市唐河县、亳州市涡阳县、大理漾濞彝族自治县、阜新市海州区、本溪市南芬区
















黄山市屯溪区、万宁市后安镇、上海市静安区、镇江市丹徒区、永州市冷水滩区、南通市启东市、临夏东乡族自治县、长春市农安县、长治市壶关县、中山市港口镇
















哈尔滨市延寿县、内蒙古鄂尔多斯市杭锦旗、宣城市宣州区、宜春市靖安县、滁州市南谯区




抚顺市新宾满族自治县、鞍山市台安县、鸡西市恒山区、三明市尤溪县、潍坊市潍城区、长春市绿园区  娄底市双峰县、沈阳市和平区、阜阳市颍泉区、楚雄南华县、绍兴市柯桥区、南平市武夷山市
















赣州市瑞金市、广西梧州市龙圩区、普洱市宁洱哈尼族彝族自治县、德州市平原县、赣州市信丰县




甘孜得荣县、金华市永康市、成都市成华区、盐城市盐都区、济南市济阳区




阜新市阜新蒙古族自治县、毕节市赫章县、内蒙古乌海市乌达区、焦作市修武县、杭州市滨江区、南阳市宛城区、江门市江海区、临沂市兰陵县、清远市清新区
















黄南尖扎县、无锡市滨湖区、重庆市黔江区、直辖县神农架林区、定安县黄竹镇、哈尔滨市延寿县、常德市津市市、陵水黎族自治县文罗镇、抚州市黎川县、驻马店市西平县
















赣州市定南县、玉溪市红塔区、儋州市光村镇、宁德市福鼎市、莆田市涵江区、宜宾市翠屏区

光合生物如何适应进化?中国团队破解高效捕获利用光能分子机制

  中新网北京9月12日电 (记者 孙自法)作为海洋中主要浮游植物之一,颗石藻能适应海水不同深度的多变光环境,高效的光合自养生长可助其快速繁殖,但颗石藻光系统复合物如何能高效捕获和利用光能的微观机理及进化机制,此前并不清楚,也备受关注。

  来自中国科学院的消息说,中国科学家团队最近在光合生物适应进化研究中取得一项重大发现:首次在原子层面揭示颗石藻通过扩展和优化其光系统结构来适应海洋光环境的独特策略,成功破解了颗石藻光系统复合物高效利用光能的分子机制。

颗石藻光系统I-捕光天线超大复合物结构及其能量转化效率示意图。中国科学院植物研究所 供图

  这项重要研究突破由中国科学院植物研究所王文达研究员、田利金研究员带领团队完成,他们首次纯化并解析来自赫氏艾米里颗石藻的光系统I-岩藻黄素叶绿素a/c结合蛋白(PSI-FCPI)超级复合物三维结构,破解了光合生物适应进化的分子机制。北京时间9月12日凌晨,该研究成果论文以封面形式在国际知名学术期刊《科学》上线发表。

  王文达表示,颗石藻光系统复合物的结构解析和机理研究,为理解光合生物高效的能量转化机制提供了新的结构模型。未来,研究团队也希望以此为基础设计新型光合作用蛋白,并进一步指导人工模拟和开发高碳汇生物资源,这在合成生物学和气候变化应对领域,都具有巨大潜力。

  田利金介绍说,颗石藻PSI-FCPI超级复合物是一个巨大光合膜蛋白机器,由51个蛋白亚基和819个色素分子组成,分子量高达1.66兆道尔顿,远超已知的真核生物光系统I捕光天线复合物。它的捕光截面是典型陆地植物(豌豆)光系统I超级复合物的4至5倍。飞秒瞬态吸收光谱结果表明,颗石藻PSI-FCPI捕获光能的量子转化效率超过95%,与陆地植物光系统I超级复合物效率相当,说明颗石藻PSI-FCPI具备特殊的蛋白组装和能量传递特征。

  此次研究发现,颗石藻的光系统I核心周围环绕着38个岩藻黄素叶绿素a/c结合蛋白捕光天线,并以模块化的方式排列成8个放射状排布的捕光天线条带。这种“旋涡围绕”光系统I核心的巨型捕光天线依靠大量新型捕光天线的精密装配,极大扩展了捕光面积。

  研究团队还鉴定到丰富的叶绿素c和岩藻黄素类型的类胡萝卜素,这些色素在新发现的捕光天线中含量极高,使其能有效吸收深水区波长在460-540纳米间的蓝绿光和绿光。此外,大量叶绿素c与叶绿素a形成紧密的能量耦联并消除能量陷阱,构成平坦畅通的能量传递网络,这可能是其保持超高量子转化效率的关键。

  据了解,颗石藻细胞壁是由碳酸钙晶体组成的颗石片,其在白垩纪达到鼎盛,不仅是海洋初级生产力的主要贡献者,还依靠其碳酸钙外壳在地层中留下显著的“白垩”痕迹,因此在海洋碳沉积和全球碳循环中扮演重要角色。(完)

【编辑:李润泽】
相关推荐: